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Gene set enrichment analysis (GSEA) is a powerful tool to associate a disease
phenotype to a group of genes/proteins. GSEA attributes a specific weight to each
gene/protein in the input list that depends on a metric of choice, which is usually
represented by quantitative expression data. However, expression data are not always
available. Here, GSEA based on betweenness centrality of a protein–protein interaction
(PPI) network is described and applied to two cases, where an expression metric
is missing. First, personalized PPI networks were generated from genes displaying
alterations (assessed by array comparative genomic hybridization and whole exome
sequencing) in four probands bearing a 16p13.11 microdeletion in common and several
other point variants. Patients showed disease phenotypes linked to neurodevelopment.
All networks were assembled around a cluster of first interactors of altered genes with
high betweenness centrality. All four clusters included genes known to be involved
in neurodevelopmental disorders with different centrality. Moreover, the GSEA results
pointed out to the evidence of “cell cycle” among enriched pathways. Second, a large
interaction network obtained by merging proteomics studies on three neurodegenerative
disorders was analyzed from the topological point of view. We observed that most
central proteins are often linked to Parkinson’s disease. The selection of these proteins
improved the specificity of GSEA, with “Metabolism of amino acids and derivatives”
and “Cellular response to stress or external stimuli” as top-ranked enriched pathways.
In conclusion, betweenness centrality revealed to be a suitable metric for GSEA.
Thus, centrality-based GSEA represents an opportunity for precision medicine and
network medicine.

Keywords: systems medicine, network medicine, gene set enrichment analysis, topological analysis,
neurodevelopment, neurodegeneration

Abbreviations: aCGH, array-based comparative genomic hybridization; AD, Alzheimer’s disease; ALS, amyotrophic lateral
sclerosis; ES, enrichment score; GO, gene ontology; GSEA, gene set enrichment analysis; HITS, hypertext-induced topics
search; MAF, minor allele frequency; NES, normalized enrichment score; PD, Parkinson’s disease; PPI, protein–protein
interaction; SNV, single nucleotide variant; WES, whole exome sequencing.
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INTRODUCTION

High-throughput data consist in a wide amount of information
obtained as the output of last-generation technologies.
Nowadays, data from omics approaches are obtained to
systematically explore human biology at a cellular or molecular
level. This leads to a significant advantage in the study of
a biological system in its complexity (Tebani et al., 2016).
On the other hand, an analytical method capable of reading,
prioritizing, and interpreting such large set of information is
needed. The integration of the medical/biological language and
the mathematical/computational language in a cross-disciplinary
approach represents a challenge (Barabási, 2007). For this reason,
new theories and new algorithms have now been generated,
and a strong support of bioinformatics tools becomes necessary
(Al-Haggar et al., 2013).

Gene set enrichment analysis (GSEA) is a powerful tool
for the interpretation of high-throughput expression studies
such as mass spectrometry-based proteomics or Next-Generation
Sequencing, in order to identify insights into biological processes
or pathways underlying a given phenotype. Thanks to the
acquisition of an expression profile, the list of differentially
expressed genes is ranked in terms of a metric associated to the
observed expression change. The ranked gene list is compared
to a gene set, i.e., a list of genes known to be associated with
a certain biological process, gene ontology (GO), molecular
function or pathway. The metric is needed to calculate the
enrichment score (ES) that indicates the degree by which a
gene set is overrepresented at the extremes of the ranked list
(Subramanian et al., 2005).

In the Big Data era, meaningful models and impactful results
may only be achieved at the network complexity level. In
particular, genomics and quantitative approaches to network-
based analysis are combined to advance the frontiers of network
medicine (Sonawane et al., 2019). Indeed, the multifactorial
approach of network medicine is based on the multiplicity
of factors that can alter a system to identify functional
connections that link the clinical phenotype to multiple factors
(Piñero et al., 2016).

Usually, protein networks are built starting from a list of query
proteins and by retrieving the protein–protein interaction (PPI)
information from a suitable database. The resulting network may
be further enriched by looking for first interactors that might join
isolated or distant nodes. The rationale of this approach is that
proteins that were identified as phenotype-correlated by chance
are likely excluded from the network, whereas proteins that for
several reasons were not detected as phenotype-correlated are
now reconnected to the network (Fasano et al., 2016). A standard
functional analysis of the resulting network usually consists in an
over-representation analysis based on the Fisher’s exact test or a
GSEA (Monti et al., 2019).

The Graph Theory provides tools to analyze the connectivity
structure and the topology of a network. Node centrality and
edge betweenness are among the most useful parameters to
identify hotspots in a network. The importance of a node is
the extent of its involvement in a network, and this can be
measured in multiple ways. Common measures include degree,

closeness, betweenness and eigenvector centralities (Ashtiani
et al., 2018). The latter is at the core of the PageRank and the
hypertext-induced topics search (HITS) algorithms for ranking
networks (Kleinberg, 1999). The betweenness centrality of a
given node takes into account the number of geodesics, or
shortest paths, between any couple of nodes that include the
considered node over the total number of geodesics that connect
any couple of nodes of the graph. When nodes are in distinct
components, the geodesic pathway is not defined. Otherwise,
the betweenness centrality ranges from 0 to 1. On the other
hand, the closeness centrality is inversely proportional to the
sum of the shortest paths between the given node and any other
node in the network.

Several algorithms have been proposed to combine pathway
enrichment analysis with network topological information and
their performance has been recently reviewed (Ma et al.,
2019). Some of them take into account interconnectivity
or adjacency information, whereas other consider centrality
measures such as degree or betweenness centrality. Nevertheless,
all topology-based pathway enrichment analysis methods require
an expression metric that indicate whether a gene is differentially
expressed in a group comparison.

Since whole genome sequencing (WGS) and whole exome
sequencing (WES) are useful genomics tools to identify genes
showing alterations (e.g., single nucleotide variants – SNVs,
Indels, larger duplications or deletions), the results generated by
these techniques can be used to generate personalized networks
for each individual (Suwinski et al., 2019). More generally,
altered genes can be considered as constituting the input list for
generating a PPI network that reflects a disease network model
in a single individual, thus allowing for the comparison between
personalized networks of patients with the same phenotype and a
distinct genetic background.

Here, we propose a GSEA approach to analyze PPI networks
based on betweenness centrality values as ranking metrics. The
proposed analysis was applied to two case paradigms. In the
first case, the network was obtained from genomics data, where
quantitative expression metrics are not available. In the second
case, the network represents the result of a secondary data
analysis, where proteomics data are scraped from the literature
and quantitative information is not always available.

MATERIALS AND METHODS

Definition of Gene Signatures From
Genomics Analysis
The patients and their parents came from the cohort of
medical genetics clinics of the ASST Sette Laghi showing clinical
phenotypes related to neurodevelopmental disorders. A written
informed consent to perform array-based comparative genomic
hybridization (aCGH) and WES, and a consent for use of
anonymous data for research were provided by the parents
and relatives of the patients. The consent model and procedure
were approved by the Institutional Review Board (ASST Sette
Laghi Cod MOD09 IOS01SSDGM). Neurocognitive tests were
based on WISC-IV (Wechsler Intelligence Scale for Children).
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Language skills were assessed with Boston and TROG-2 tests. No
bias selection of gender, family history or age was performed.
To identify submicroscopic chromosomal rearrangements, the
aCGH technology was performed after DNA extraction from
peripheral blood cells (QIAmp DNA blood Maxi Kit, Qiagen,
Hilden, Germany). The four patients were selected on the basis
of the presence of 16p13.11 microdeletion.

For exome results, genes involved in neurodevelopmental
disorders and genes related to rare diseases were considered
according to literature. Among these, genes with variants
in hemizygosity, homozygosity, compound heterozygosity and
simple heterozygosity inherited from the healthy non-carrier
parent of the 16p13.11 deletion were selected.

Array-based comparative genomic hybridization was
performed using CytoSure ISCA V2 4x180K platform with a
backbone resolution of 1 probe/25 Kb and 1 probe/19 Kb in
critical regions, human genome reference hg19/GRCh37 and
sex matched normal human DNA pool (Kreatech, Amsterdam,
Holland) as control. InnoScan 710 Microarray Scanner
(Carbonne, France) and Mapix (Innopsys, Carbonne, France)
were used to detect and analyze fluorescence levels. Results were
interpreted using Cytosure Interpret Software (Oxford Gene
Technology, Begbroke, Oxfordshire, United Kingdom).

Whole exome sequencing was performed on probands and
parents DNA using the Twist Human Core Exome Kit (Twist
Bioscience, San Francisco, CA, United States), according to the
manufacturer’s protocol and sequenced on the Illumina NovaSeq
6000 platform. The BaseSpace pipeline (Illumina, San Diego,
CA, United States) and the TGex software (LifeMap Sciences,
Alameda, CA, United States) were used for the variant calling
and annotation, respectively. Sequencing data were aligned to the
hg19/GRCh37 human reference genome. Variants with a lower
coverage than 10×, quality score (GQ) <15, and gnomAD minor
allele frequency (MAF) >5% have been excluded.

TABLE 1 | Gene signatures for the four patients.a

Patient 1 Patient 2 Patient 3 Patient 4

ABCC1 ABCC1 ABCC1 ABCC1

ABCC6 ABCC6 ABCC6 ABCC6

ANK3 BCKDK BCKDK FOPNL

DYRK1A CHRNA7 FOPNL GPRASP1

FOPNL FOPNL IQSEC2 MARF1

GRIN2A GRM5 MARF1 MYH11

KIF1A MARF1 MYH11 NDE1

MARF1 MECP2 NDE1 NLGN4X

MYH11 MYH11 NOMO3 NOMO1

NDE1 NDE1 RGPD4 NOMO3

NOMO3 NOMO3 RRN3 NPIPA1

NPIPA1 RRN3 TG NRXN1

NTAN1 SHANK1 TSC2 NTAN1

PDXDC1 XYLT1 XYLT1 PDXDC1

RRN3 PHEX

RRN3

aLists include altered genes from both aCGH and WES results.

TABLE 2 | Betweenness centrality values (−log10) of all signature genes.

Patient 1 Patient 2 Patient 3 Patient 4

ABCC1 3.98 3.87 3.70 3.86

ABCC6 5.02 4.80 4.71 4.74

ANK3 3.00 – – –

BCKDK – 3.11 2.90 –

CHRNA7 – 3.18 – –

DYRK1A 2.97 – – –

FOPNL 4.63 4.69 4.61 4.60

GPRASP1 – – – 2.97

GRIN2A 5.07 – – –

GRM5 – 5.13 – –

IQSEC2 – – 4.79 –

KIF1A 2.52 – – –

MARF1 3.87 3.67 3.51 3.58

MECP2 – 2.50 – –

MYH11 2.78 2.91 2.74 2.77

NDE1 2.53 2.49 2.32 2.38

NLGN4X – – – 5.49

NOMO1 – – – 2.68

NOMO3 4.46 3.99 3.85 4.03

NPIPA1 0 – – 0

NRXN1 – – – 5.55

NTAN1 5.27 – – 4.82

PDXDC1 3.03 – – 2.94

PHEX – – – 0

RGPD4 – – 5.49 –

RRN3 4.78 4.66 4.51 4.75

SHANK1 – 3.45 – –

TG – – 0 –

TSC2 – – 2.53 –

XYLT1 – 4.19 4.07 –

Protein–Protein Interaction Networks
From Genomics Analysis
Cytoscape 3.7.21 was used to generate networks (Su et al., 2014).
The public database IMEx2 was queried through Cytoscape using
the PSICQUIC standard (the Proteomics Standard Initiative
Common QUery InterfaCe). Each list of altered genes, obtained
by aCGH and WES as described above, was used to generate a
network encompassing all first interactors of the gene products.
The network was filtered for taxonomy ID 9606 (Homo sapiens)
to remove homology inferences. A first interactors list was
generated and used to query the IMEx database again, thus
including second interactors too. All self loops and duplicated
edges were removed. Node degrees were calculated using the
NetworkAnalyzer plugin. Isolated (degree = 0) and terminal
(degree = 1) nodes were removed to reduce the network size,
with the only exception for isolated/terminal nodes included in
the input list of altered genes.

1https://cytoscape.org/
2https://www.imexconsortium.org/
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Protein–Protein Interaction Network
From Secondary Data Analysis
Proteins reported to be associated to Parkinson’s disease (PD),
amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD)
were extracted from a secondary data analysis by Monti et al.
(2018). Using a pubmed scraping procedure, authors obtained
lists of proteins reported to be quantitatively altered in the three
neurodegenerative disorders considered and built a network that
encompasses all selected proteins and their common interactors
using PPI spider (Antonov et al., 2009). The network was then
exported as a.xgmml file.

Topological Analysis in Cytoscape
Betweenness centrality was calculated for each node in
networks by using the NetworkAnalyzer utility in the
Cytoscape Environment. Both size and border width of
all nodes were mapped onto their betweenness centrality
values. The betweenness centrality of node ni is given by

CB (ni) =
∑

j<K
σjk(ni)

σjk
1(N
2

)where N is the total number of

nodes, σjk is the number of geodesics between nodes nj and nk,
and σjk(ni) is the number of geodesic pathways containing node
ni. Networks were reduced in size by selecting nodes having
betweenness centrality ≥10−4 for display clarity only. For each
network, betweenness centralities were transformed with a Hill
function in order to enhance the weight of nodes with higher

values, as follows hereafter: C
′

B =
Ch
B

k+Ch
B

.

Gene Set Enrichment Analysis Using R
Gene set enrichment analysis was performed using the
ReactomePA package (Yu and He, 2016) in the R environment for
statistical analysis (R Core Team, 2017). Normalized enrichment
score (NES), p-value, and false discovery rate (FDR) for all
variables and signatures were obtained in the R environment.

FIGURE 1 | Top 10 nodes in terms of betweenness centrality and interacting signature nodes. Red nodes are genes from the individual gene signature and
navy-blue nodes are their first interactors. Diameter and border width of nodes are proportional to betweenness centrality, whereas edge width is proportional to
edge betweenness.
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The database for biological processes/pathways Reactome was
used for the analysis (Fabregat et al., 2017). Hill-transformed
betweenness centralities were used as a suitable ranked list metric
instead of those usually considered in expression studies. The
list was then resampled by randomly assigning observed values
to gene IDs and the analysis was performed again to identify
pathways in common with those arising from the analysis of
values that were obtained from the topological analysis of the
networks. The R code is reported in the Supplementary Material.

Over-Representation Analysis
Over-representation analysis was performed for comparison
using the WEB-based GEne SeT AnaLysis Toolkit3 (Liao et al.,
2019) using Reactome as the functional database and “human
genome, protein coding” as the reference set.

RESULTS

Personalized Signatures From aCGH and
WES Analysis
Four patients were referred to genetic investigations for
diagnostic purposes and counseling for developmental disorders
ranging from learning delay to intellectual disability, with
or without associated congenital malformations. By aCGH
screening, a microdeletion on 16p13.11 was identified. The
deletion on 16p13.11 was either inherited from the healthy
mother (two patients) or from the healthy father (one patient),
or it was a de novo unbalance (one patient). Several mutations
inherited from both healthy parents were found in the four
patients by WES analysis. By merging aCGH and WES results,
lists of altered genes were generated and used as personalized
signatures for each patient (Table 1).

The datasets presented in this study can be found in
online repositories. The names of the repository/repositories
and accession number(s) are listed hereafter. For aCGH data:
DECIPHER4 350680 (Patient 1), 414066 (Patient 2), 414078
(Patient 3) and 318359 (Patient 4). For WES data: European
Variation Archive Project: PRJEB41629, Analyses: ERZ1687005.

Genomics Networks Without Expression
Metrics
The four lists of altered genes were used to generate personalized
networks. Supplementary Figure 1 shows an overview of the four
networks encompassing first and second interactors after filtering
out isolated and terminal nodes (i.e., nodes with degree = 0
and degree = 1, respectively) and nodes with betweenness
centrality≤10−4, except for genes in the signature lists. Signature
genes display different betweenness centrality values in the four
personalized models with three orders of magnitude among
different genes (Table 2). None of the interaction networks has
nodes with high values. Genes MYH11 and NDE1 are present in
all four networks with relatively high centralities, whereas ANK3,

3www.webgestalt.org
4https://decipher.sanger.ac.uk/

CHRNA7, DYRK1A, KIF1A, SHANK1, and TSC2, although they
are present in single networks, also have high centrality. On the
other hand, several signature genes have negligible centrality,
although they are present in all four networks (e.g., ABCC1,
ABCC6, FOPNL, MARF1, NOMO3, and RRN3).

Figure 1 shows the 10 most central nodes in each personalized
network together with interacting signature genes. In all cases,
top 10 nodes are among the first interactors of signature genes,
with six out of 10 genes in common among patients (i.e.,
DISC1, ESR1, GOLGA2, GRB2, JUN, and HSCB). No signature
genes displayed centrality values comparable to first interactors
represented in Figure 1. An over-representation analysis of these
clusters, including top 10 genes and interacting signature genes,
did not lead to any significantly over-represented pathway.

In order to enrich the functional analysis with nodes with
higher centrality, original betweenness centrality values were
transformed with a Hill function. Figure 2 shows ranked
centrality values before and after the transformation. In this way,
nodes with low centrality have a negligible contribution to the
ES, whereas nodes with high centrality represent leading edges.
As an example, patient 1 network had 8,101 nodes. Among
them, 579 nodes had a score (i.e., betweenness centrality after
Hill transformation) greater than 0.2, 318 greater than 0.5, and
192 greater than 0.8. Therefore, this transformation dramatically
reduced the dimensionality of the dataset by selecting less
than 10% of the original network genes. As a comparison, we
performed the same transformation using closeness centrality. As
shown in Supplementary Figure 2, closeness centrality values are
distributed in a narrow range even after Hill transformation.

Gene set enrichment analysis was performed for the four
networks using transformed betweenness centrality values as the
scoring metric, with Reactome as gene set database. Figure 3
shows enriched categories as a dot plot, with dot size proportional
to the number of overlapping genes. All patients displayed
the enrichment of one or more pathways related to cell
cycle and to Rho GTPases in a different ranking in terms

FIGURE 2 | Centrality metrics before and after Hill transformation. The solid
line shows betweenness centrality obtained from the topological analysis of a
representative personalized network. The dashed line represents centrality
values after transformation with a Hill function.
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FIGURE 3 | Dot plots for the four GSEA results. Numbers refer to patients as indicated in Table 1. Dot size is proportional to the number of overlapping genes.
p-values are color-coded according to the color scale.

of statistically significant gene ratio, i.e., the ratio between
the number of genes related to each pathway and the total
number of genes in the network. These pathways were not
identified after resampling of scores obtained from betweenness
centrality values (Supplementary Figure 3). Moreover, classic
over-representation analysis of the whole network without
ranking measures led to a different set of enriched pathways.
Table 3 summarizes enriched pathways found by classic over-
representation analysis of patient 1 network as a whole and by
selecting subsets of nodes by their ranking (8,101, 579, 318, and
192 genes, respectively) (see Supplementary Materials).

Consensus Networks From Secondary
Data Analysis
The centrality-based GSEA approach was then applied on a
consensus network already available in the literature. In a
previous paper by Monti et al. (2018), authors retrieved full-
text proteomics original articles focused on the development
of three neurodegenerative diseases and extracted three input
lists including 928 proteins for AD, 1,155 proteins for PD, and
387 proteins for ALS. The input lists were used to generate
a consensus network representing interactions among proteins
in the lists (Monti et al., 2018). We performed the topological
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TABLE 3 | Comparison of enriched pathways.

Pathway ORA Alla

(8101)
ORA 0.2

(579)
ORA 0.5

(318)
ORA 0.8

(192)
GSEA GSEA

random

Translation X

RNA metabolism X X

Deubiquitination X X

Developmental biol. X

Organelle biogenesis X X

Vesicle transport X X X

Transcription X X X X

Disease X X X X

Immune system X X X X X

Cell cycle X X X X X

Apoptosis/Cell death X X X X

Cellular resp. to
stress/ext. stimuli

X X X X

Rho GTPases
effectors/signaling

X X X X

Post-transl.
modification

X X

Cilium assembly X X

Intracellular signaling X X

Hemostasis X

Biological oxidations X

aORA All, over-representation analysis performed on all nodes in the network; ORA
0.2, ORA performed on 579 nodes with ranking metric >0.2; ORA 0.5, ORA
performed on 318 nodes with ranking metric >0.5; ORA 0.8, ORA performed
on 192 nodes with ranking metric >0.8; GSEA, topology-based GSEA using
all ranked genes; GSEA random, topology-based GSEA using all ranked genes
after resampling.

analysis of the consensus network, whose results are shown in
Figure 4A, where node size and border width are proportional
to betweenness centrality. This network encompasses 483 nodes
and 659 edges. Noteworthy, among the 95 nodes with the highest
betweenness centrality (i.e., the top 20% central nodes), 78 are
linked to PD, either in common or not with other diseases
(Figure 4B). Most central genes are TIMP2 and EIF3A, both
associated to PD only, and GABARAPL2, associated to PD and
AD. However, these three genes did not lead to any significant
association with PD pathogenesis, when taken alone. All nodes
related to PD were then extracted from the whole network for
further topological analysis and GSEA (Figure 4C).

Gene set enrichment analysis was performed for the whole
network (Figure 4A) and for the PD network (Figure 4C)
using Hill-transformed betweenness centrality values as the
scoring metrics, with Reactome as gene set reference database.
Figure 5 shows enriched categories as a dot plot, with dot
size proportional to the number of overlapping genes. For the
whole network, enriched pathways mainly refer to catabolic
pathways. Immune system appeared to be significantly enriched;
however, it was also found after resampling of centrality metrics
(Supplementary Figure 4). On the other hand, most significantly
enriched pathways for the PD network were “Metabolism of
amino acids and derivatives” and “Cellular response to stress or
external stimuli,” that were not observed in the analysis of the
resampled dataset.

FIGURE 4 | Topological analysis of the proteomics neurodegeneration
network from secondary data analysis. (A) Whole network; (B) top 20% most
central nodes; (C) selection from the whole network of nodes altered in
Parkinson’s disease (PD) patients. Nodes are color-coded as follows. Pink,
PD; dark green, amyotrophic lateral sclerosis (ALS); orange, Alzheimer’s
disease (AD); yellow, PD and ALS; light green, ALS and AD; red, PD and AD;
black, PD, ALS and AD (adapted from Monti et al., 2018). Node size and
border width are proportional to betweenness centrality, whereas edge width
is proportional to edge betweenness.

DISCUSSION

Gene set enrichment analysis is usually performed to associate
a disease phenotype to a group of genes by using quantitative
expression data. Unlike over-representation analysis, GSEA
has the advantage of considering the role of each gene by
taking into account its correlation to the clinical phenotype
or any other categorical variable (treatment, stage, time, and

Frontiers in Genetics | www.frontiersin.org 7 February 2021 | Volume 12 | Article 577623

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-577623 February 18, 2021 Time: 21:51 # 8

Zito et al. Centrality-Based GSEA

FIGURE 5 | Dot plots for the GSEA results. (A) Whole network; (B) selection of nodes altered in Parkinson’s disease patients. Dot size is proportional to the number
of overlapping genes. P-values are color-coded according to the color scale.

other experimental conditions) (Subramanian et al., 2005).
Nevertheless, a quantitative metric is not always available in
a dataset. Here, GSEA based on betweenness centrality of a
PPI network is described and applied to two cases, where an
expression metric is missing.

Actually, building a network starting from a list of entities
such as genes or proteins is based on publicly available evidence
of interaction, and the topology of the network accounts for the
specific role each protein plays in the network itself. The degree

of each node (i.e., the number of interactions with other nodes)
is clearly a measure of how much this node is integrated in the
network. We decided to consider the betweenness centrality as
a suitable metric to rank network nodes in terms of the role
they play in the disease represented by the network. Among
other centrality measures, betweenness centrality discriminates
centrality of nodes over a range that spans orders of magnitudes,
unlike closeness centrality values that are distributed in a narrow
range and therefore are slightly affected by the resampling
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procedure. Signature genes of the first case analyzed here showed
very different centrality values in a range from 10−6 to 10−3.
Worthy of note, several genes showing high centrality values
are involved in neurodevelopmental disorders. Indeed, some of
them (ANK3, BCKDK, CHRNA7, DYRK1A, MECP2, SHANK1,
and TSC2) are included in the database SFARI (Banerjee-
Basu and Packer, 2010) with high scores, supporting that
the gene contributes to the disorder pathogenesis or it is a
strong candidate.

The personalized networks are assembled around a cluster of
very central genes, whose composition is partially overlapping.
Interestingly, the top 10 clusters never include signature genes,
and the weight of every member of the clusters may change
among patients. As an example, the leucine-rich repeat kinase 2
(LRRK2) is present in all four networks. However, its centrality
is low in patient 1 (CB = 7.56 × 10−3), whereas it has the top
value in the other three patients. Recently, a role for LRRK2 in
cognitive development has been proposed, thus linking LRRK2 to
intellectual disability and autism (Labonne et al., 2020). Another
gene present with very high centrality in all four networks, ESR1,
has been related to the pathogenesis of autism and autism related
symptoms (Wang et al., 2016).

We used the tools included in the ReactomePA package (Yu
and He, 2016) to associate a topological parameter to each
gene in the dataset in place of commonly used expression
data. However, we observed that betweenness centrality values
show a steep decrease within the first nodes in the ranked
list. To select a sub-population of central nodes, betweenness
centrality values were transformed with a Hill function that
assigns high scores to less than 10% nodes. In this way, a
drastic change in the weight associated to each gene is expected.
Using Hill-transformed betweenness centrality values, GSEA of
the four personalized networks yielded a different ranking of
enriched pathways or even different pathways. As an example,
the pathway “Cell Cycle, Mitotic” is enriched in all four patient
networks. However, its ranking differs in the four dot plots.
From the pathogenetic point of view, all patients share a
neurodevelopmental impairment that is brought to evidence by
the present analysis (e.g., “Mitotic G1-G1/S phase” pathway). It
is known from literature that neurodevelopmental disorders are
related to alterations of the cell cycle, and a central role is played
by genes involved in neurogenesis regulation and cell adhesion
processes (Pramparo et al., 2015). Moreover, our evidence
supports the conclusions obtained so far on NDE1, the candidate
gene for the susceptibility to the neurocognitive disorder given
by the deletion on 16p13.11. Using a bottom-up approach,
NDE1 and NDEL1 (its paralogue) were deeply characterized
(i.e., biochemistry, PPIs, role in neuronal differentiation and
cortical development, pathology caused by their alterations)
(Bradshaw and Hayashi, 2017). In particular, the role of NDE1
and NDEL1 in cell cycle progression, neurite outgrowth and
development and neuronal migration has been highlighted, thus
supporting our results.

As a second application of the proposed approach, we
analyzed a PPI network previously published by our group
(Monti et al., 2018). This network encompasses proteins that were
reported to quantitatively change in three neurodegenerative

diseases by independent articles. Two of them are movement
disorders (PD and ALS) and one is a cognitive disorder
(AD). The original aim of the work was to distinguish
between proteins that are specifically associated to a single
neurodegenerative disease and proteins generically linked to
neurodegeneration. Topological analysis of the network adds
substance to this purpose. We observed that most central proteins
are often linked to PD, either standalone or associated to
other disorders. Indeed, the most evident colors in Figure 4B
are pink (PD), red (PD and AD) and black (PD, AD and
ALS). To gain more evidence to pathways associated to most
central nodes, we extracted a subnetwork to represent all
proteins that were altered in PD. This selection, together
with the topological analysis, allowed us to improve the
specificity of GSEA.

The use of a topological parameter to perform GSEA in the
absence of any quantitative expression metric was never done
before. This application of GSEA has been performed on two
datasets, where expression metrics were not available. Although
we decided to consider betweenness centrality as a ranking
metric, further analyses could be performed by identifying other
candidate topological parameters and using these data to obtain
new pathway networks and new information.

CONCLUSION

The centrality-based GSEA procedure is another powerful tool
to investigate personalized networks or disease networks, in
order to unveil hidden information and to specifically plan
experimental investigations. This analysis can be applied to a
wide variety of networks, also in combination with clustering
tools. Since biological networks are usually too large and are
characterized by high modularity, topological descriptors could
assist the identification of functional modules (Sharma et al.,
2017; Choobdar et al., 2019). Altogether, the functional analysis
of networks by weighting nodes in terms of their centrality could
also provide a valuable tool to explore pathogenetic mechanisms
and to precisely identify sensitive targets for drug development or
repositioning. In this view, centrality-based GSEA represents an
opportunity for precision medicine and network medicine.
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